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ABSTRACT

In strongly compressible magnetohydrodynamic turbulence, obliqueness be-

tween the large-scale density gradient and magnetic field gives an electromotive

force mediated by density variance (intensity of density fluctuation). This ef-

fect is named “magnetoclinicity”, and is expected to play an important role

in large-scale magnetic-field generation in astrophysical compressible turbulent

flows. Analysis of large-scale instability due to the magnetoclinicity effect shows

that the mean magnetic-field perturbation is destabilised at large scales in the

vicinity of strong mean density gradient in the presence of density variance.

Subject headings: Dynamo, Stars, Sun, magnetic field, turbulence, cross helicity

1. Magnetoclinicity: Dynamo at strong compressibility

With the aid of the two-scale direct-interaction approximation (TSDIA), a multiple-

scale renormalised perturbation expansion theory for inhomogeneous turbulence (Yoshizawa

1984; Yokoi 2020), the turbulent electromotive force (EMF) is written as (Yokoi 2018a,b)

〈u′ × b′〉 = −(β+ζ)∇×B+αB−(∇ζ)×B+γ∇×U−χρ∇ρ×B−χQ∇Q×B−χD
DU

Dt
×B,

(1)
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where u′ is the velocity fluctuation, b′ the magnetic fluctuation, B the mean magnetic field,

U the mean velocity, ρ the mean density, Q the mean internal energy, D/Dt = ∂/∂t+U · ∇,

and 〈· · ·〉 denotes ensemble averaging. Here, the transport coefficients ηT(= β + ζ), α and

γ represent the turbulent magnetic-diffusivity, residual-helicity and cross-helicity effects, re-

spectively, which are present even in the incompressible case (Yokoi 2013). On the other

hand, the transport coefficients χρ, χQ, and χD have no counterparts in the incompressible

case. They are related to the obliqueness of mean magnetic field to the gradients of density,

internal energy, etc., and are called “magnetoclinicity”. Note that in the TSDIA frame-

work, they depend on the response functions and the compressible energy spectra with the

multiplicational wavenumber factor k2. This corresponds to the square of turbulent dilata-

tion, (∇ · u′)2, and is directly connected to the magnitudes of density and internal-energy

fluctuations.

The physical origin of the magnetoclinicity effect can be obtained as follows. Through

simplest linear relations, the density and internal-energy fluctuations can be expressed in

terms of the turbulent dilatation as

ρ′ = −τρρ∇ · u′, q′ = −(γs − 1)τqQ∇ · u′, (2)

where γs is the ratio of the specific heats at the constant pressure and volume, and τρ and

τq are the characteristic times for the density and internal-energy fluctuations, respectively.

These relations naturally show that the density and internal-energy fluctuations are reduced

or enhanced respectively with turbulent expansion (∇ · u′ > 0) or contraction (∇ · u′ < 0).

From the equation of state, the fluctuation pressure is linearly related to the density and

internal energy as p′ = (γs − 1) (q′ρ+ ρ′Q). Then the velocity fluctuation is related to the

turbulent dilatation as

∂u′

∂t
= · · · − 1

ρ
∇p′ + · · · ' · · · − (γs − 1)

q′

ρ
∇ρ− (γs − 1)

ρ′

ρ
∇Q+ · · ·

' · · ·+ (γs − 1)2τq
Q

ρ
(∇ · u′)∇ρ+ (γs − 1)τρ(∇ · u′)∇Q+ · · · . (3)

Here, use has been made of (2) on the final evaluation of (3), which suggests that positive

(negative) turbulent dilatation leads to velocity fluctuation parallel (anti-parallel) to the

mean density gradient. On the other hand, from the induction equation of fluctuating

magnetic field, we have
∂b′

∂t
= · · · − (∇ · u′)B + · · · . (4)

This represents the effect of magnetoacoustic wave. Positive (negative) turbulent dilatation

induces the magnetic fluctuation whose direction is opposite (parallel) to the mean magnetic

field (Fig. 1).
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Fig. 1.— Turbulent electromotive force due to the mis-alignment of the mean magnetic field

B from the gradient of mean density or internal energy, ∇ρ or ∇Q. Cases for the local

expansion (positive dilatation) (left) and the local contraction (negative dilatation) (right).

Integrating (3) and (4) with respect to time, we get approximate expressions for u′ and

b′. Then, the EMF due to turbulent dilatation, 〈u′ × b′〉TD, is given as

〈u′ × b′〉TD ' − (γs − 1)2τuτbτq
〈
(∇ · u′)2

〉 Q
ρ
∇ρ×B

− (γs − 1)τuτbτρ
〈
(∇ · u′)2

〉
∇Q×B, (5)

where τu and τb are the characteristic times of velocity and magnetic-field evolutions, re-

spectively. Equation (5) infers that in the presence of the obliqueness between the mean

magnetic field B and the gradient of mean density, ∇ρ, and/or the gradient of mean internal

energy, ∇Q, the EMF is induced in the direction of B ×∇ρ and/or B ×∇Q, mediated by

the turbulent dilatation. It is important to note that the direction of 〈u′ × b′〉TD is always

in the direction of B×∇ρ and/or B×∇Q, independent of the sign of turbulent dilatation

(Fig. 1).

2. Equilibrium state and disturbance

In this work, we study a large-scale instability of compressible MHD turbulence: How do

the mean or large-scale fields evolve under the influence of the turbulent transport represented

by turbulent correlations such as the turbulent mass flux 〈ρ′u′〉, Reynolds stress 〈u′u′〉,
turbulent Maxwell stress 〈b′b′〉, turbulent internal-energy flux 〈q′u′〉, EMF 〈u′ × b′〉, etc.

appearing in the mean-field equations. For this purpose, a mean-field quantity F is divided

into the equilibrium unperturbed state F0 and the deviation from it or disturbance, δF , as

F = F0+δF with the disturbance being much smaller than the equilibrium field: |δF | � |F0|.
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In this work, for the sake of simplicity, we assume simplified equilibrium mean fields for

the velocity and magnetic field in the rectangular coordinate system (x, y, z):

U = U0 + δU = δU = (δUx, δUy, δU z) , (6)

B = B0 + δB = (B0, 0, 0) + (δBx, δBy, δBz) . (7)

The mean equilibrium velocity U0 is assumed to be zero (U0 = 0), and the mean equilibrium

magnetic field B0 is put in the x direction transverse to the mean equilibrium density gradient

∇ρ0 and uniform (B0 = const.).

We decompose the mean-field equations into F0 and δF with (6) and (7), we have

equations of disturbances:

∂δρ

∂t
+ (δU · ∇)ρ0 + ρ0∇ · δU = −∇ · 〈ρ′u′〉1, (8)

∂

∂t
ρ0δU

α = −∂δP
∂xα

+
∂

∂xa
µ

(
∂δUα

∂xa
+
∂δUa

∂xα

)
+ (J0 × δB)α + (δJ×B0)

α

− ∂

∂xa

[
δρ

(
〈u′au′α〉0 −

1

µ0ρ0
〈b′ab′α〉0

)
+ δUa〈ρ′u′α〉0 + δUα〈ρ′u′a〉0

]
, (9)

∂

∂t
(ρ0δQ+ δρQ0) +∇ · (ρ0δUQ0)

= ∇ ·
(
κ

Cv
∇δQ

)
−∇ · (δρ〈q′u′〉0 + δQ〈ρ′u′〉0)

+δU〈ρ′q′〉0 − (γs − 1) [ρ0Q0∇ · δU + δρ〈q′∇ · u′〉0 + δQ〈ρ′∇ · u′〉0] , (10)

∂δB

∂t
= ∇× (δU×B0) + η∇2δB +∇× 〈u′ × b′〉1 (11)

and the solenoidal condition of the magnetic field: ∇ · δB = 0.

The pressure and internal-energy perturbations, δP and δQ, can be expressed in terms

of the density perturbation δρ with the speed of sound cs as

δP = (γs − 1) (ρ0δQ+Q0δρ) = c2sδρ. (12)

Then, there is no need to solve the internal-energy equation.

The turbulent correlations in the mean-field perturbation equations are given as

〈ρ′u′〉0 = −κρ∇ρ0, 〈ρ′u′〉1 = −κρ∇δρ, (13)
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〈u′αu′β〉0 −
1

µ0ρ
〈b′αb′β〉0 = −νK

(
∂Uβ

0

∂xα
+
∂Uα

0

∂xβ

)
+ νM

(
∂Bβ

0

∂xα
+
∂Bα

0

∂xβ

)/
µ0ρ = 0, (14)

〈u′ × b′〉1 = −ηTδJ + αδB + γδΩ + χρB0 ×∇δρ+ χρδB×∇ρ0, (15)

where κρ, νK, and νM are the transport coefficients. Note that (14) gives no contribution

because of the assumptions (6) and (7).

3. Normal mode analysis of the mean-field equations

We analyse an arbitrary disturbance into a complete set of normal modes, and examine

the stability of each of these modes characterised by a wave number k. The disturbances are

expressed in terms of two-dimensional periodic waves as

δF = f̂(z) exp[i(kxx+ kyy)− iωkt], (16)

where δF = (δρ, δU, δQ, δB) and f̂ = (ρ̂, û, q̂, b̂). In general this formalism leads to a two-

point boundary eigenvalue problem for the functions f̂(z). Here, as the simplest possible case,

we assume that the amplitudes of disturbances, f̂ , do not depend on the vertical coordinate

z and constant, which will be relaxed in subsequent papers. Under this assumption, the

equations of perturbations are(
−k2κρ + iωk

)
ρ̂+ ikxρ0û

x + ikyρ0û
y +

dρ0
dz

ûz = 0, (17)

−ikxc2sρ̂+

(
κρ
d2ρ0
dz2

+ iωkρ0

)
ûx = 0, (18)

−ikyc2sρ̂+

(
κρ
d2ρ0
dz2

+ iωkρ0

)
ûy − ikyB0b̂

x + ikxB0b̂
y = 0, (19)

ikxκρû
x + ikyκρû

y +

(
κρ
d2ρ0
dz2

+ iωkρ0

)
ûz + ikxB0

dρ0
dz

b̂z = 0, (20)

k2γûx − ikyB0û
y +

(
−k2ηT + χρ

d2ρ0
dz2

+ iωk

)
b̂x + ikyαb̂z = 0, (21)

(
k2γ + ikxB0

)
ûy +

(
−k2ηT + χρ

d2ρ0
dz2

+ iωk

)
b̂y − ikxαb̂z = 0, (22)

ikxB0û
x + k2γûz − ikyαb̂x + ikxαb̂y +

(
−k2ηT + iωk

)
b̂z = 0. (23)

This system of equations (17)-(23) with the solenoidal conditions for the magnetic field is

analysed. One of the dispersion relations is given by

χρ
d2ρ0
dz2
− ηTk

2 + iωk = 0. (24)
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From this, the α component of large-scale magnetic-field disturbance is written as

δBα = b̂α exp

[(
−ηTk

2 + χρ
d2ρ0
dz2

)
t

]
exp[i(kxx+ kyy)]. (25)

The first term in the temporal evolution part arises from the turbulent magnetic diffusivity

ηT. The growth of the mean-field perturbations are suppressed by ηT. This effect is strongest

at small scales where the wave number k is large. On the other hand, in the presence of a

strong mean density inhomogeneity such that

χρ
d2ρ0
dz2

> ηTk
2, (26)

the second or χρ-related term in the temporal evolution part contributes to the growth

of mean-field perturbations. This large-scale instability, the magnetoclinicity instability, is

important only in the region where the density variance is strong enough since it also depends

on χρ(∝ 〈ρ′2〉).

4. Instability across the strong density variation

In order to quantitatively evaluate the magnetoclinicity effect, we consider a simplest

possible spatial profile of the unperturbed density ρ0(z) as

ρ0(z) = ρm − ρd tanh
(
z/zd

)
, (27)

where ρm[= (ρ> + ρ<)/2] is the reference (average) density, ρd[= (ρ> − ρ<)/2] the density

difference, and zd the depth of mean density variation. For the spatial distribution of

unperturbed density (27), the first and second derivatives are given as

dρ0(z)

dz
= −

ρd
zd

1

cosh2
(
z/zd

) , d2ρ0(z)

dz2
= +

2ρd
z2
d

tanh(z/zd)

cosh2
(
z/zd

) . (28)

The schematic spatial distribution of the unperturbed density, its first and second derivatives,

as well as the setup considered, are depicted in Fig. 2.

With this density configuration, the second derivative is positive in the upper layer (low

density region) and negative in the lower layer (high density region) as

d2ρ0
dz2

{
> 0 (z > 0, ρ< : low density),

< 0 (z < 0, ρ> : high density).
(29)

It follows from (25) that the mean magnetic-field disturbance can increase in the low density

(positive z) side, and decays in the high-density (negative z) side. The lower the wave
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z

ρ0(z)

z

dρ0(z)
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z

d2ρ0(z)
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∇}ρ

B × ∇}ρ

Fig. 2.— Schematic spatial distributions of (a) the unperturbed density ρ0(z), (b) its first

derivative with respect to z, d2ρ0/dz, (c) the second derivative d2ρ0/dz
2, and (d) the setup

with transverse B.

number k is, the larger the growth rate of the perturbed magnetic field is. In this sense, this

magnetoclinicity effect is more suitable for producing large-scale magnetic-field structures

than small-scale ones. The growth rate also depends on how much large transport coefficient

χρ is. The magnitude of χρ reflects the magnitude of density variance 〈ρ′2〉. If the high χρ
region is spatially localised, the instability region of the large magnetic field is also spatially

localised. A region with a strong mean density gradient ∇ρ is favourable for high density

variance 〈ρ′2〉, since 〈ρ′2〉 is generated by strong ∇ρ coupled with −〈ρ′u′〉. We stress again

here that although the arguments here make physical sense, a global analysis involving a

two-point boundary value problem is necessary to elucidate the mechanisms.

This work was supported by Japan Society for the Promotion of Science (JSPS) Grants-

in-Aid for Scientific Research: JP18H01212.
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